Cho tam giác ABC. Dựng \(\overrightarrow {A'B} = \overrightarrow {BC} ,\overrightarrow {C'A} = \overrightarrow {AB} \) và \(\overrightarrow {BC'} = \overrightarrow {CA} \)
a) Chứng minh rằng A là trung điểm của B'C'
b) Chứng minh các đường thẳng AA', BB', CC' đồng quy
Gợi ý làm bài
a) \(\overrightarrow {BC'} = \overrightarrow {CA} \) => Tứ giác ACBC' là hình bình hành => \(\overrightarrow {AC'} = \overrightarrow {CB} \)
\(\overrightarrow {AB'} + \overrightarrow {AC'} = \overrightarrow {BC} + \overrightarrow {CB} = \overrightarrow {BB} = \overrightarrow 0 \) =>A là trung điểm của B'C'
b) Vì tứ giác ACBC' là hình bình hành nên CC' chứa trung tuyến của tam giác ABC xuất phát từ đỉnh C. Tương tự như vậy với AA', BB'. Do đó AA', BB', CC' đồng quy tại trọng tâm G của tam giác ABC.
Sachbaitap.net
>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, hoàn trả học phí nếu học không hiệu quả.
Bài viết liên quan
Các bài khác cùng chuyên mục