Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 1.42 trang 44 Sách bài tập (SBT) Toán Hình học 10

Bình chọn:
4 trên 2 phiếu

Cho tam giác ABC.

Cho tam giác ABC. Các điểm \(M(1;1),N(2;3),P(0; - 4)\) lần lượt là trung điểm các cạnh BC, CA, AB. Tính tọa độ các đỉnh của tam giác.

Gợi ý làm bài

(h.1.56)

\(\overrightarrow {MN}  = (1;2)\)

\(\overrightarrow {PA}  = ({x_A};{y_A} + 4)\)

Vì \(\overrightarrow {PA}  = \overrightarrow {MN} \) suy ra

\(\left\{ \matrix{
{x_A} = 1 \hfill \cr
{y_A} + 4 = 2 \hfill \cr} \right. = > \left\{ \matrix{
{x_A} = 1 \hfill \cr
{y_A} = - 2 \hfill \cr} \right.\)

Tương tự, ta tính được 

\(\left\{ \matrix{
{x_B} = - 1 \hfill \cr
{y_B} = - 6 \hfill \cr} \right. = > \left\{ \matrix{
{x_C} = 3 \hfill \cr
{y_C} = 8 \hfill \cr} \right.\)

Vậy tọa độ các đỉnh của tam giác là \(A(11; - 2),B( - 1; - 6),C(3;8)\)

Sachbaitap.net

Bài tiếp theo

Xem lời giải SGK - Toán 10 - Xem ngay

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, hoàn trả học phí nếu học không hiệu quả.

Bài viết liên quan