Loigiaihay.com 2020

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 15 trang 40 Sách bài tập (SBT) Toán Đại số 10

Bình chọn:
4 trên 2 phiếu

Lập bảng biến thiên và vẽ đồ thị của hàm số bậc hai

Lập bảng biến thiên và vẽ đồ thị của hàm số bậc hai

a) \(y = 2{x^2} + 4x - 6\)

b) \(y =  - 3{x^2} - 6x + 4\)

c) \(y = \sqrt 3 {x^2} + 2\sqrt 3 x + 2\)

d) \(y =  - 2({x^2} + 1)\)

Gợi ý làm bài

a) Hàm số bậc hai đã cho có a = 2; b = 4; c = -6;

Vậy \( - {b \over {2a}} =  - 1;\Delta  = {b^2} - 4ac = 64; - {\Delta  \over {4a}} =  - 8\)

Vì a > 0, ta có bảng biến thiên 

Hàm số nghịch biến trên khoảng \(( - \infty ; - 1)\) đồng biến trên khoảng \(( - 1; + \infty )\)

Để vẽ đồ thị ta có trục đối xứng là đường thẳng x = -1; đỉnh I(-1;-8); giao với tục tung tại điểm (0;-6); giao với trục hoành tại các điểm (-3;0) và (1;0).

Đồ thị của hàm số \(y = 2{x^2} + 4x - 6\) được vẽ trên hình 35.

b) Bảng biến thiên

Hàm số đồng biến trên khoảng \(( - \infty ; - 1)\) và nghịch biến trên khoảng \(( - 1; + \infty )\)

Đỉnh parabol I(-1;7). Đồ thị của hàm số \(y =  - 3{x^2} - 6x + 4\) được vẽ trên hình 36.

c) Bảng biến thiên

Hàm số nghịch biến trên khoảng \(( - \infty ; - 1)\) và đồng biến trên khoảng \(( - 1; + \infty )\)

Đỉnh parabol \(( - 1;2 - \sqrt 3 )\)

Đồ thị hàm số được vẽ trên hình 37.

d) \(y =  - 2{x^2} - 2\)

Bảng biến thiên

Hàm số đồng biến trên khoảng \(( - \infty ;0)\) và nghịch biến trên khoảng  \((0; + \infty )\) , hàm số là chẵn.

Đỉnh parabol I(0;-2); đồ thị đi qua điểm (1;-4) và điểm (-1;-4). 

Đồ thị hàm số \(y =  - 2({x^2} + 1)\) được vẽ trên hình 38.

Sachbaitap.net

Bài tiếp theo

Xem lời giải SGK - Toán 10 - Xem ngay

>> Học trực tuyến Lớp 10 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Bài viết liên quan