Cho lục giác đều ABCDEF và M là một điểm tùy ý. Chứng minh rằng:
\(\overrightarrow {MA} + \overrightarrow {MC} + \overrightarrow {ME} = \overrightarrow {MB} + \overrightarrow {MD} + \overrightarrow {MF} \)
Gợi ý làm bài
(h.1.65)
Gọi O là tâm lục giác đều. Khi đó O là trọng tâm của các tam giác đều ACE và BDF.
Do đó, với mọi điểm M ta có:
\(\overrightarrow {MA} + \overrightarrow {MC} + \overrightarrow {ME} = 3\overrightarrow {MO} \)
\(\overrightarrow {MB} + \overrightarrow {MD} + \overrightarrow {MF} = 3\overrightarrow {MO} \)
Vậy ta có đẳng thức cần chứng minh.
Sachbaitap.net
>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Click để xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục