Cho tam giác ABC và một điểm M tùy ý. Chứng minh rằng vec tơ \(\overrightarrow v = \overrightarrow {MA} + \overrightarrow {MB} - 2\overrightarrow {MC} \) không phụ thuộc vào vị trí của điểm M. Hãy xác định điểm D sao cho \(\overrightarrow {CD} = \overrightarrow v \).
Gợi ý làm bài
\(\overrightarrow v = \overrightarrow {MA} + \overrightarrow {MB} - 2\overrightarrow {MC}\)
\( = 2\overrightarrow {ME} - 2\overrightarrow {MC} \) (E là trung điểm cạnh AB)
\( = 2(\overrightarrow {ME} - \overrightarrow {MC} ) = 2\overrightarrow {EC} \)
Vậy \(\overrightarrow v \) không phụ thuộc vị trí của điểm M.
\(\overrightarrow {CD} = \overrightarrow v = 2\overrightarrow {CE} \) thì E là trung điểm của CD. Vậy ta xác định được điểm D.
Sachbaitap.net
>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Click để xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục