Loigiaihay.com 2021

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 22 trang 218 Sách bài tập (SBT) Toán Đại số 10

Bình chọn:
4 trên 2 phiếu

Không dùng bảng số và máy tính, hãy tính

Không dùng bảng số và máy tính, hãy tính

a) \(\cos {67^0}30'\) và \({\rm{cos7}}{{\rm{5}}^0}\)

b) \({{\cos {{15}^0} + 1} \over {2\cot {{15}^0}}}\)

c) \(\tan {20^0}\tan {40^0}\tan {80^0}\)

d) \(\cos {\pi  \over 7}\cos {{4\pi } \over 7}\cos {{5\pi } \over 7}\)

Gợi ý làm bài

a) \(\cos {67^0}30' = \cos {{{{135}^0}} \over 2} = \sqrt {{{1 + \cos {{135}^0}} \over 2}} \)

\( = \sqrt {{{1 - {{\sqrt 2 } \over 2}} \over 2}}  = {{\sqrt {2 - \sqrt 2 } } \over 2}\)

\(\cos {75^0} = \cos ({45^0} + {30^0}) = {{\sqrt 2 } \over 4}(\sqrt 3  - 1)\)

b) 

\(\eqalign{
& \cos {30^0} = {1 \over {\tan {{2.15}^0}}} \cr
& = {{1 - {{\tan }^2}{{15}^0}} \over {2\tan {{15}^0}}} = {{{{\cot }^2}{{15}^0} - 1} \over {2\cot {{15}^0}}} \cr} \)

Đặt \(x = \cos {15^0}\) và chú ý rằng \(\cos {30^0} = \sqrt 3 \) ta có

\(\sqrt 3  = {{{x^2} - 1} \over {2x}} \Leftrightarrow {x^2} - 2\sqrt 3  - 1 = 0\)

Giải phương trình trên ta được \(x = 2 + \sqrt 3 \) (nghiệm \(x = \sqrt 3  - 2\) loại vì \(\cot {15^0} > 0\)). Do đó

\(\eqalign{
& {{{{\cot }^2}{{15}^0} + 1} \over {2\cot {{15}^0}}} = {{2 + \sqrt 3 + 1} \over {2(2 + \sqrt 3 )}} \cr
& = {{3 + \sqrt 3 } \over {2(2 + \sqrt 3 )}} = {{3 - \sqrt 3 } \over 2} \cr} \)

c) Ta có:

\(\tan {20^0}\tan {40^0}\tan {80^0} =  - \tan {20^0}\tan {40^0}\tan {100^0}\)

\( =  - \tan ({60^0} - {40^0})\tan {40^0}\tan ({60^0} + {40^0})\)

\( =  - {{\tan {{60}^0} - \tan {{40}^0}} \over {1 + \tan {{60}^0}\tan {{40}^0}}}\tan {40^0}{{\tan {{60}^0} + \tan {{40}^0}} \over {1 - \tan {{60}^0}\tan {{40}^0}}}\)

\( =  - {{3 - {{\tan }^2}{{40}^0}} \over {1 - 3{{\tan }^2}{{40}^0}}}\tan {40^0} =  - \tan {120^0} = \sqrt 3 \)

d) Hướng dẫn: Nhân thêm \(\sin {\pi  \over 7}\)

Đáp số: \({1 \over 8}\)

Sachbaitap.net

Bài tiếp theo

Xem lời giải SGK - Toán 10 - Xem ngay

>> Học trực tuyến Lớp 10 tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, hoàn trả học phí nếu học không hiệu quả.

Bài viết liên quan