Gọi \({m_a},{m_b},{m_c}\) là các trung tuyến lần lượt ứng với các cạnh a, b, c của tam giác ABC.
a) Tính \({m_a}\), biết rằng a = 26, b = 18, c = 16
b) Chứng minh rằng: \(4(m_a^2 + m_{_b}^2 + m_{_c}^2) = 3({a^2} + {b^2} + {c^2})\)
Gợi ý làm bài
a) \(m_a^2 = \dfrac{{{b^2} + {c^2}}}{2} - \dfrac{{{a^2}}}{4} = \dfrac{{{{18}^2} + {{16}^2}}}{2} - \dfrac{{{{26}^2}}}{4}\)
\(\eqalign{
& = {{324 + 256} \over 2} - {{676} \over 4} = {{484} \over 4} \cr
& = > {m_a} = {{22} \over 2} = 11 \cr} \)
b) \(\left\{ \matrix{
m_a^2 = {{{b^2} + {c^2}} \over 2} - {{{a^2}} \over 4} \hfill \cr
m_b^2 = {{{a^2} + {c^2}} \over 2} - {{{b^2}} \over 4} \hfill \cr
m_c^2 = {{{a^2} + {b^2}} \over 2} - {{{c^2}} \over 4} \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
4m_a^2 = 2({b^2} + {c^2}) - {a^2}\;(1) \hfill \cr
4m_b^2 = 2({a^2} + {c^2}) - {b^2}\;(2) \hfill \cr
4m_c^2 = 2({a^2} + {b^2}) - {c^2}\;(3) \hfill \cr} \right.\)
Cộng (1), (2), (3) theo vế với vế ta được:
\(4(m_a^2 + m_{_b}^2 + m_{_c}^2) = 3({a^2} + {b^2} + {c^2})\)
Sachbaitap.com
>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, hoàn trả học phí nếu học không hiệu quả.
Bài viết liên quan
Các bài khác cùng chuyên mục