Cho tứ giác lồi ABCD có đường chéo AC = x, đường chéo BD = y và góc tạo bởi AC và BD là \(\alpha \). Gọi S là diện tích của tứ giác ABCD.
a) Chứng minh rằng \(S = {1 \over 2}x.y.\sin \alpha \)
b) Nêu kết quả trong trường hợp AC vuông góc với BD.
Gợi ý làm bài
(h.2.30)
a) Ta có: \({S_{ABCD}} = {S_{ABD}} + {S_{CBD}}\)
Vẽ AH và CK vuông góc với BD.
Gọi I là giao điểm của hai đường chéo AC và BD. Ta có: \(AH = AI\sin \alpha \)
\({S_{ABCD}} = {1 \over 2}AH.BD + {1 \over 2}CK.BD\)
\( = {1 \over 2}BD(AH + CK)\)
\( = {1 \over 2}BD(AI + IC)sin\alpha = {1 \over 2}BD.AC\sin \alpha \)
\({S_{ABCD}} = {1 \over 2}x.y\sin \alpha \)
b) Nếu \(AC \bot BD\) thì \(\sin \alpha = 1\), khi đó \({S_{ABCD}} = {1 \over 2}x.y\). Như vậy nếu tứ giác lồi ABCD có hai đường chéo AC và BD vuông góc với nhau thì diện tích của tứ giác bằng một nửa tích độ dài của hai đường chéo.
Sachbaitap.net
>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Click để xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục