Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 2.51 trang 104 Sách bài tập (SBT) Toán Hình học 10

Bình chọn:
4 trên 2 phiếu

Tam giác ABC có BC

Tam giác ABC có BC = 12, CA = 13, trung tuyến AM = 8

a) Tính diện tích tam giác ABC;

b) Tính góc B.

Gợi ý làm bài

(h.2.33)

Theo công thức Hê – rông ta có:

\({S_{AMC}} = \sqrt {{{27} \over 2}\left( {{{27} \over 2} - 13} \right)\left( {{{27} \over 2} - 6} \right)\left( {{{27} \over 2} - 8} \right)} \)

\( = {{9\sqrt {55} } \over 4}\)

\({S_{ABC}} = 2{S_{AMC}} = {{9\sqrt {55} } \over 2}\)

Mặt khác ta có \(A{M^2} = {{{b^2} + {c^2}} \over 2} - {{{a^2}} \over 4}\) hay \(2A{M^2} = {b^2} + {c^2} - {{{a^2}} \over 2}\)

Do đó 

\(\eqalign{
& A{B^2} = {c^2} = 2A{M^2} - {b^2} + {{{a^2}} \over 2} \cr
& = 2.64 - 169 + 72 = 31 \cr} \)

\( =  > c = \sqrt {31} \)

\(\eqalign{
& \cos B = {{{a^2} + {c^2} - {b^2}} \over {2ac}} = {{144 + 31 - 169} \over {24\sqrt {31} }} \cr
& \approx 0,045 = > \widehat B \approx {87^0}25' \cr} \)

Sachbaitap.net

Bài tiếp theo

Xem lời giải SGK - Toán 10 - Xem ngay

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Click để xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Bài viết liên quan