Giải tam giác ABC biết: \(\widehat A = {60^0},\widehat B = {40^0};c = 14\)
Gợi ý làm bài
Tam giác ABC có cạnh c = AB = 14 và có \(\widehat A = {60^0},\widehat B = {40^0}\). Ta có: \(\widehat C = {180^0} - (\widehat A + \widehat B) = {80^0}\) cần tìm a và b. Theo định lí sin:
\({a \over {\sin A}} = {b \over {\sin B}} = {c \over {\sin C}}\) ta suy ra \(a = {{c\sin A} \over {\sin C}} = {{7\sqrt 3 } \over {\sin {{80}^0}}} \approx 12,31\)
\(b = {{c\sin B} \over {\sin C}} = {{14\sin {{40}^0}} \over {\sin {{80}^0}}} \approx 9,14\)
Sachbaitap.net
>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Click để xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục