Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 3.17 trang 151 Sách bài tập (SBT) Toán Hình học 10.

Bình chọn:
2.5 trên 4 phiếu

Cho đường tròn tâm (C) đi qua hai điểm

Cho đường tròn tâm (C)  đi qua hai điểm A(-1;2), B(-2;3) và có tâm ở trên đường thẳng \(\Delta :3x - y + 10 = 0\)

a) Tìm tọa độ tâm của (C);

b) Tính bán kính R của (C);

b)Viết phương trình của (C); 

Gợi ý làm bài

Gọi I(a;b) là tâm của (C) ta có:

\(\eqalign{
& \left\{ \matrix{
I{A^2} = I{B^2} \hfill \cr
I \in \Delta \hfill \cr} \right. \cr
& \Leftrightarrow \left\{ \matrix{
{\left( {a + 1} \right)^2} + {\left( {b - 2} \right)^2} = {\left( {a + 2} \right)^2} + {\left( {b - 3} \right)^2} \hfill \cr
3a - b + 10 = 0 \hfill \cr} \right. \cr} \)

\( \Leftrightarrow \left\{ \matrix{
2a - 2b = - 8 \hfill \cr
3a - b = - 10 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
a = - 3 \hfill \cr
b = 1. \hfill \cr} \right.\)

Vậy (C) có tâm I (-3 ; 1).

b) \(R = IA = \sqrt {{{\left( { - 1 + 3} \right)}^2} + {{\left( {2 - 1} \right)}^2}}  = \sqrt 5 \)

c) Phương trình của (C)  là: \({\left( {x + 3} \right)^2} + {\left( {y - 1} \right)^2} = 5\)

Sachbaitap.net

Bài tiếp theo

Xem lời giải SGK - Toán 10 - Xem ngay

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Click để xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Bài viết liên quan