Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 3.27 trang 152 Sách bài tập (SBT) Toán Hình học 10

Bình chọn:
4 trên 3 phiếu

Cho hai đường tròn (C1)

Cho hai đường tròn (C1) : \({x^2} + {y^2} - 6x + 5 = 0\)

và     (C2) : \({x^2} + {y^2} - 12x - 6y + 44 = 0\)

a) Tìm câm và bán kính của (C 1)  và (C 2)  .

b) Lập phương trình tiếp tuyến chung của (C 1)  và (C 2). 

Gợi ý làm bài

a) (C 1) có tâm có bán kính \({R_1} = 2\);

    (C 2) có tâm có bán kính \({R_2} = 1\).

b) Xét đường thẳng \(\Delta \) có phương trình:

\(y = kx + m\) hay \(kx - y + m = 0\). Ta có:

\(\Delta\) tiếp xúc vơi (C 1)  và (C 2) khi và chỉ khi

\(\left\{ \matrix{
d({I_1},\Delta ) = {R_1} \hfill \cr
d({I_2},\Delta ) = {R_2} \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
{{\left| {3k + m} \right|} \over {\sqrt {{k^2} + 1} }} = 2(1) \hfill \cr
{{\left| {6k - 3 + m} \right|} \over {\sqrt {{k^2} + 1} }} = 1.(2) \hfill \cr} \right.\)

Từ (1) và (2) suy ra

\(\left| {3k + m} \right| = 2\left| {6k - 3 + m} \right|\)

Trường hợp 1: \(3k + m = 2(6k - 3 + m) \Leftrightarrow m = 6 - 9k\) (3)

Thay vào (2) ta được

\(\left| {6k - 3 + 6 - 9k} \right| = \sqrt {{k^2} + 1}  \Leftrightarrow \left| {3 - 3k} \right| = \sqrt {{k^2} + 1} \)

\( \Leftrightarrow 9 - 18k + 9{k^2} = {k^2} + 1\)

\( \Leftrightarrow 8{k^2} - 18k + 8 = 0\)

\(\Leftrightarrow 4{k^2} - 9k + 4 = 0\)

\( \Leftrightarrow \left[ \matrix{
{k_1} = {{9 + \sqrt {17} } \over 8} \hfill \cr
{k_2} = {{9 - \sqrt {17} } \over 8} \hfill \cr} \right.\)

Thay giá trị của k vào (3) ta tính được

\(\left[ \matrix{
{k_1} = 6 - 9{k_1} \hfill \cr
{k_2} = 6 - 9{k_2} \hfill \cr} \right.\)

Vậy ta được hai tiếp tuyến

\({\Delta _1}:y = {k_1}x + 6 - 9{k_1};\)

\({\Delta _2}:y = {k_2}x + 6 - 9{k_2}.\)

Trường hợp 2

\(\eqalign{
& 3k + m = - 2(6k - 3 + m) \cr
& \Leftrightarrow 3m = 6 - 15k \cr} \)

\( \Leftrightarrow m = 2 - 5k\) (4)

Thay vào (2) ta được

\(\left| {6k - 3 + 2 - 5k} \right| = \sqrt {{k^2} + 1}  \Leftrightarrow \left| {k - 1} \right| = \sqrt {{k^2} + 1} \)

\( \Leftrightarrow {(k - 1)^2} = {k^2} + 1\)

\(\Leftrightarrow {k^2} - 2k + 1 = {k^2} + 1\)

\( \Leftrightarrow k = 0.\)

Thay giá trị của k vào (4) ta được m = 2.

Vậy ta được tiếp tuyến

\({\Delta _3}:y = 2.\)

Xét đường thẳng \({\Delta _4}\) vuông góc với Ox tại \({x_0}\):

\({\Delta _4}:x - {x_0} = 0.\)

\({\Delta _4}\) tiếp xúc vơi (C 1)  và (C 2) khi và chỉ khi

\(\eqalign{
& \left\{ \matrix{
d({I_1},{\Delta _4}) = {R_1} \hfill \cr
d({I_2},{\Delta _4}) = {R_2} \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
\left| {3 - {x_0}} \right| = 2 \hfill \cr
\left| {6 - {x_0}} \right| = 1 \hfill \cr} \right. \cr
& \Leftrightarrow \left\{ \matrix{
{x_0} = 1 \vee {x_0} = 5 \hfill \cr
{x_0} = 5 \vee {x_0} = 7 \hfill \cr} \right. \Leftrightarrow {x_0} = 5. \cr} \)

Vậy ta được tiếp tuyến: \({\Delta _4}:x - 5 = 0\)

Tóm lại hai đường tròn (C 1)  và (C 2) có bốn tiếp tuyến chung \({\Delta _1}\), \({\Delta _2}\), \({\Delta _3}\) và \({\Delta _4}\)

Sachbaitap.net

Bài tiếp theo

Xem lời giải SGK - Toán 10 - Xem ngay

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, hoàn trả học phí nếu học không hiệu quả.

Bài viết liên quan