Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 3.37 trang 160 Sách bài tập (SBT) Toán Hình học 10

Bình chọn:
4 trên 2 phiếu

Cho ba điểm

Cho ba điểm A(2;1), B(0;5), C(-1;-10).

a) Tìm tọa độ trọng tâm G, trực tâm H và tâm I đường tròn ngoại tiếp tam giác ABC.

b) Chứng minh I, G, H thẳng hàng.                                                                                                           

c) Viết phương trình đường tròn ngoại tiếp tam giác ABC.

Gợi ý làm bài

a) + Trọng tâm \(G\left( { - 1; - {4 \over 3}} \right)\)

+ Tọa độ trực tâm H(x;y)

\(\eqalign{
& \overrightarrow {AH} (x - 2;y - 1) \cr
& \Rightarrow \overrightarrow {AH} .\overrightarrow {BC} = (x - 2).( - 5) + (y - 1).( - 15) \cr} \)

\(\eqalign{
& \overrightarrow {BH} = (x;y - 5) \cr
& \Rightarrow \overrightarrow {BH} .\overrightarrow {CA} = x.( - 7) + (y - 5).( - 11) \cr} \)

Do  là trực tâm 

\(\eqalign{
& \Leftrightarrow \left\{ \matrix{
\overrightarrow {AH} .\overrightarrow {BC} = 0 \hfill \cr
\overrightarrow {BH} .\overrightarrow {CA} = 0 \hfill \cr} \right. \cr
& \Leftrightarrow \left\{ \matrix{
(x - 2).( - 5) + (y - 1).( - 15) = 0 \hfill \cr
x.( - 7) + (y - 5).( - 11) = 0 \hfill \cr} \right. \cr
& \Leftrightarrow \left\{ \matrix{
x = 11 \hfill \cr
y = - 2 \hfill \cr} \right. \cr} \)

+ Tọa độ tâm đường tròn ngoại tiếp I(x;y)

\(AI_{}^2 = (x - 2)_{}^2 + (y - 1)_{}^2\)

\(BI_{}^2 = x_{}^2 + (y - 5)_{}^2\)

\(CI_{}^2 = (x + 5)_{}^2 + (y + 10)_{}^2\)

Ta có:

\(\eqalign{
& AI_{}^2 = BI_{}^2 = CI_{}^2 \Leftrightarrow \left\{ \matrix{
AI_{}^2 = BI_{}^2 \hfill \cr
BI_{}^2 = CI_{}^2 \hfill \cr} \right. \cr
& \Leftrightarrow \left\{ \matrix{
(x - 2)_{}^2 + (y - 1)_{}^2 = x_{}^2 + (y - 5)_{}^2 \hfill \cr
x_{}^2 + (y - 5)_{}^2 = (x + 5)_{}^2 + (y + 10)_{}^2 \hfill \cr} \right. \cr
& \Leftrightarrow \left\{ \matrix{
x = - 7 \hfill \cr
y = - 1 \hfill \cr} \right. \cr} \)

b) Ta có: \(\overrightarrow {IH} (18; - 1)\), \(\overrightarrow {IG} \left( {6; - {1 \over 3}} \right)\)

\( \Rightarrow \overrightarrow {IH}  = 3\overrightarrow {IG} \) suy ra I,G,H thẳng hàng.

c) Ta có: 

\(R = IA = \sqrt {( - 7 - 2)_{}^2 + ( - 1 - 1)_{}^2}  = \sqrt {85} \)

Phương trình đường tròn ngoại tiếp tam giác ABC là: \((x + 7)_{}^2 + (y + 1)_{}^2 = 85\)

Sachbaitap.net

Bài tiếp theo

Xem lời giải SGK - Toán 10 - Xem ngay

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Click để xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Bài viết liên quan