Loigiaihay.com 2023

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 16 trang 198 Sách bài tập (SBT) Toán Hình học 10

Bình chọn:
4 trên 2 phiếu

Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật có một đỉnh là O

Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật có một đỉnh là O, diện tích bằng 12 và đường tròn ngoại tiếp (T) của có có phương trình là \({\left( {x - {5 \over 2}} \right)^2} + {y^2} = {{25} \over 4}\). Tìm tọa độ các đỉnh còn lại của hình chữ nhật.

Gợi ý làm bài

(Xem hình 3.39)

Đường tròn (T) có tâm \(I\left( {{5 \over 2};0} \right)\) và bán kính \(R = {5 \over 2}\).

\(\overrightarrow {OB}  = 2\overrightarrow {OI}  = \left( {5;0} \right)\) suy ra B(5 ; 0). Đặt A(x ; y) ta có hệ phương trình:

\(\eqalign{
& \left\{ \matrix{
{\left( {x - {5 \over 2}} \right)^2} + {y^2} = {{25} \over 4} \hfill \cr
\sqrt {{x^2} + {y^2}} .\sqrt {{{\left( {5 - x} \right)}^2} + {y^2}} = 12 \hfill \cr} \right. \cr
& \Leftrightarrow \left\{ \matrix{
{y^2} = {{25} \over 4} - {\left( {x - {5 \over 2}} \right)^2} \hfill \cr
\left[ {{x^2} + 5x - {x^2}} \right]\left[ {{{\left( {5 - x} \right)}^2} + 5x - {x^2}} \right] = 144 \hfill \cr} \right. \cr} \)

\( \Leftrightarrow \left\{ \matrix{
{y^2} = 5x - {x^2} \hfill \cr
\left[ \matrix{
x = {9 \over 5} \hfill \cr
y = {{16} \over 5} \hfill \cr} \right. \hfill \cr} \right.\)

Vậy ta được

\(A\left( {{9 \over 5};{{12} \over 5}} \right)\), \(C\left( {{6 \over 5};{{ - 12} \over 5}} \right)\)

Hoặc \(A\left( {{9 \over 5};{{ - 12} \over 5}} \right)\), \(C\left( {{6 \over 5};{{12} \over 5}} \right)\)

Sachbaitap.net

Bài tiếp theo

Xem lời giải SGK - Toán 10 - Xem ngay

>> Học trực tuyến Lớp 10 tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, hoàn trả học phí nếu học không hiệu quả.

Bài viết liên quan