Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 1.61 trang 46 Sách bài tập (SBT) Toán Hình học 10

Bình chọn:
4 trên 2 phiếu

Cho các điểm

Cho các điểm A'(-4;1), B'(2;4) và C'(2; - 2) lần lượt là trung điểm các cạnh BC, CA và AB của tam giác ABC.

a) Tính tọa độ các đỉnh của tam giác ABC;

b) Chứng minh rằng các trọng tâm của các tam giác ABC và A'B'C' trùng nhau.

Gợi ý làm bài

(Xem hình 1.72)

a)

\(\overrightarrow {C'A} = \overrightarrow {A'B'} = > \left\{ \matrix{
{x_A} - 2 = 6 \hfill \cr
{y_A} + 2 = 3 \hfill \cr} \right. = > \left\{ \matrix{
{x_A} = 8 \hfill \cr
{y_A} = 1 \hfill \cr} \right.\)

\(\overrightarrow {BA'} = \overrightarrow {C'B'} = > \left\{ \matrix{
- 4 - {x_B} = 0 \hfill \cr
1 - {y_B} = 6 \hfill \cr} \right. = > \left\{ \matrix{
{x_B} = - 4 \hfill \cr
{y_B} = - 5 \hfill \cr} \right.\)

\(\overrightarrow {A'C} = \overrightarrow {C'B'} = > \left\{ \matrix{
{x_C} + 4 = 0 \hfill \cr
{y_C} - 1 = 6 \hfill \cr} \right. = > \left\{ \matrix{
{x_C} = - 4 \hfill \cr
{y_C} = 7 \hfill \cr} \right.\)

b) Tính tọa độ trọng tâm G, G' của tam giác ABC và A'B'C' ta được G(0;1) và G'(0;1).

Vậy G=G'

Sachbaitap.net

Bài tiếp theo

Xem lời giải SGK - Toán 10 - Xem ngay

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Click để xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Bài viết liên quan