Loigiaihay.com 2023

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 1.61 trang 46 Sách bài tập (SBT) Toán Hình học 10

Bình chọn:
4 trên 2 phiếu

Cho các điểm

Cho các điểm A'(-4;1), B'(2;4) và C'(2; - 2) lần lượt là trung điểm các cạnh BC, CA và AB của tam giác ABC.

a) Tính tọa độ các đỉnh của tam giác ABC;

b) Chứng minh rằng các trọng tâm của các tam giác ABC và A'B'C' trùng nhau.

Gợi ý làm bài

(Xem hình 1.72)

a)

\(\overrightarrow {C'A} = \overrightarrow {A'B'} = > \left\{ \matrix{
{x_A} - 2 = 6 \hfill \cr
{y_A} + 2 = 3 \hfill \cr} \right. = > \left\{ \matrix{
{x_A} = 8 \hfill \cr
{y_A} = 1 \hfill \cr} \right.\)

\(\overrightarrow {BA'} = \overrightarrow {C'B'} = > \left\{ \matrix{
- 4 - {x_B} = 0 \hfill \cr
1 - {y_B} = 6 \hfill \cr} \right. = > \left\{ \matrix{
{x_B} = - 4 \hfill \cr
{y_B} = - 5 \hfill \cr} \right.\)

\(\overrightarrow {A'C} = \overrightarrow {C'B'} = > \left\{ \matrix{
{x_C} + 4 = 0 \hfill \cr
{y_C} - 1 = 6 \hfill \cr} \right. = > \left\{ \matrix{
{x_C} = - 4 \hfill \cr
{y_C} = 7 \hfill \cr} \right.\)

b) Tính tọa độ trọng tâm G, G' của tam giác ABC và A'B'C' ta được G(0;1) và G'(0;1).

Vậy G=G'

Sachbaitap.net

Bài tiếp theo

Xem lời giải SGK - Toán 10 - Xem ngay

>> Học trực tuyến Lớp 10 tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, hoàn trả học phí nếu học không hiệu quả.

Bài viết liên quan