Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 2.27 trang 92 Sách bài tập (SBT) Toán Hình học 10

Bình chọn:
4 trên 2 phiếu

Trong mặt phẳng Oxy cho hai điểm

Trong mặt phẳng Oxy cho hai điểm A(5;4) và B(3;-2). Một điểm M di động trên trục hoành Ox. Tìm giá trị nhỏ nhất của \(\left| {\overrightarrow {MA}  + \overrightarrow {MB} } \right|\)

Gợi ý làm bài

(h.2.28)

Gọi I là trung điểm của đoạn AB, ta có I(4;1)

Vì \(\overrightarrow {MA}  + \overrightarrow {MB}  = 2\overrightarrow {MI} \) nên \(\left| {\overrightarrow {MA}  + \overrightarrow {MB} } \right| = 2\left| {\overrightarrow {MI} } \right|\) nhỏ nhất khi giá trị của đoạn IM nhỏ nhất. Điểm M chạy trên trục Ox nên có tọa độ dạng M(x; 0). Do đó:

\(\left| {\overrightarrow {IM} } \right| = \sqrt {{{(x - 4)}^2} + 1}  \ge 1\)

Dấu “=” xảy ra khi x = 4.

Vậy giá trị nhỏ nhất của \(\left| {\overrightarrow {MA}  + \overrightarrow {MB} } \right|\) là 2 khi M có tọa độ là M(4;0)

Sachbaitap.net

Bài tiếp theo

Xem lời giải SGK - Toán 10 - Xem ngay

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, hoàn trả học phí nếu học không hiệu quả.

Bài viết liên quan