Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 3.42 trang 161 Sách bài tập (SBT) Toán Hình học 10

Bình chọn:
3 trên 4 phiếu

Cho phương trình

Cho phương trình \({x^2} + {y^2} - 2mx - 4(m - 2)y + 6 - m = 0\,(1)\)

a) Tìm điều kiện của m để (1) là phương tình của đường tròn, ta kí hiệu là (Cm).

b) Tìm tập hợp các tâm của (Cm) khi m thay đổi.

Gợi ý làm bài

a) (1) là phương trình của đường tròn khi và chỉ khi:

\(\eqalign{
& {a^2} + {b^2} - c > 0 \cr
& \Leftrightarrow {m^2} + 4{(m - 2)^2} - 6 + m > 0 \cr} \)

\( \Leftrightarrow 5m^2 - 15m + 10 > 0 \Leftrightarrow \left[ \matrix{
m < 1 \hfill \cr
m > 2. \hfill \cr} \right.\)

b) (Cm) có tâm I(x;y) thỏa mãn: 

\(\left\{ \matrix{
x = m \hfill \cr
y = 2(m - 2) \hfill \cr} \right. \Leftrightarrow y = 2x - 4.\)

Vậy tập hợp các tâm của (C m) là một phần của đường thẳng \(\Delta :y = 2x - 4\)  thỏa mãn điều kiện giới hạn ở câu a.

Sachbaitap.net

Bài tiếp theo

Xem lời giải SGK - Toán 10 - Xem ngay

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Click để xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Bài viết liên quan