Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 3.45 trang 161 Sách bài tập (SBT) Toán Hình học 10

Bình chọn:
4 trên 2 phiếu

Cho elip (E)

Cho elip (E): \({x^2} + 4{y^2} = 16\).

a) Xác định tọa độ các tiêu điểm và các đỉnh của elip (E).

b) Viết phương trình đường thẳng \(\Delta \) đi qua điểm \(M\left( {1;{1 \over 2}} \right)\) và vectơ pháp tuyến \(\overrightarrow n  = (1;2)\)

c) Tìm tọa độ giao điểm A và B của đường thẳng \(\Delta \) và elip (E). Chứng minh MA = MB.

Gợi ý làm bài

a) \(\eqalign{
& (E):{x^2} + 4{y^2} = 16 \cr
& \Leftrightarrow {{{x^2}} \over {16}} + {{{y^2}} \over 4} = 1. \cr} \)

Ta có:

\(\eqalign{
& {a^2} = 16,{b^2} = 4 \cr
& \Rightarrow {c^2} = {a^2} - {b^2} = 12 \cr} \)

\( \Rightarrow c = 2\sqrt 3 .\)

Vậy (E) có hai tiêu điểm: \({F_1}\left( { - 2\sqrt 3 ;0} \right)\) và \({F_2}\left( {2\sqrt 3 ;0} \right)\)

và các đỉnh \({A_1}\left( { - 4;0} \right)\), \({A_2}\left( {4;0} \right)\), \({B_1}\left( {0; - 2} \right)\), \({B_2}\left( {0;2} \right)\)

b) Phương trình \(\Delta \)  có dạng : 

\(1.(x - 1) + 2.(y - {1 \over 2}) = 0\)

hay \(x + 2y - 2 = 0\)

c) Tọa độ của giao điểm của \(\Delta \) và (E) là nghiệm của hệ : 

\(\left\{ \matrix{
{x^2} + 4{y^2} = 16\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1) \hfill \cr
x = 2 - 2y.\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(2) \hfill \cr} \right.\)

Thay (2) vào (1) ta được : 

\({\left( {2 - y} \right)^2} + 4{y^2} = 16\)

\( \Leftrightarrow {(1 - y)^2} + {y^2} = 4\)

\( \Leftrightarrow 2{y^2} - 2y - 3 = 0.\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(3)\)

Phương trình (3) có hai nghiệm \({y_A}\), \({y_B}\) thỏa mãn

\({{{y_A} + {y_B}} \over 2} = {2 \over 4} = {1 \over 2} = {y_M}.\)

 Vậy MA = MB.

Ta có: \({y_A} = {{1 - \sqrt 7 } \over 2}\), \({y_B} = {{1 + \sqrt 7 } \over 2}\)

\({x_A} = 1 + \sqrt 7 \), \({x_B} = 1 - \sqrt 7 \)

Vậy A có tọa độ là \(\left( {1 + \sqrt 7 ;{{1 - \sqrt 7 } \over 2}} \right)\), B có tọa độ là \(\left( {1 - \sqrt 7 ;{{1 + \sqrt 7 } \over 2}} \right).\)

Sachbaitap.net

Bài tiếp theo

Xem lời giải SGK - Toán 10 - Xem ngay

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, hoàn trả học phí nếu học không hiệu quả.

Bài viết liên quan