Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 3.50 trang 162 Sách bài tập (SBT) Toán Hình Học 10

Bình chọn:
4 trên 2 phiếu

Cho đường tròn (C)

Cho đường tròn  (C): \({x^2} + {y^2} - 2x - 6y + 6 = 0\) và điểm M(2;4).

a) Chứng minh rằng điểm M nằm trong  (C) ;

b) Viết phương trình đường thẳng d đi qua M và cắt đường tròn (C) tại hai điểm A, B sao cho M là trung điểm của đoạn AB.

Gợi ý làm bài

a) (C): \({x^2} + {y^2} - 2x - 6y + 6 = 0 \Rightarrow \) 

(C)

\(\left\{ \matrix{
I(1;3) \hfill \cr
\,R = 2 \hfill \cr} \right.\,\)

(R là bán kính)

\(IM = \sqrt 2  < R \Rightarrow \) M nằm trong (C)

 b) Đường thẳng d cắt đường tròn (C) tại hai điểm A, B sao cho M là trung điểm của đoạn thẳng \(AB \Rightarrow d \bot IM\) tại M

Phương trình đường thẳng:

d: - qua M(2;4)

    - nhận \(\overrightarrow {{\rm{IM}}} {\rm{ = (1;1)}}\) làm vectơ pháp tuyến

\( \Rightarrow d:1.(x - 2) + 1.(y - 4) = 0\)

\( \Rightarrow d:x + y - 6 = 0.\)

Sachbaitap.net

Bài tiếp theo

Xem lời giải SGK - Toán 10 - Xem ngay

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Click để xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Bài viết liên quan