Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 12 trang 198 Sách bài tập (SBT) Toán Hình học 10

Bình chọn:
4 trên 2 phiếu

Trong mặt phẳng tọa độ Oxy, cho elip (E)

Trong mặt phẳng tọa độ Oxy, cho elip (E): \({{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1\left( {a > b > 1} \right).\) Một góc vuông uOv (vuông tại O) quay quanh gốc O, cắt elip (E) tại M và N. Chứng minh rằng \({1 \over {O{M^2}}} + {1 \over {O{N^2}}}\) không đổi, từ đó suy ra MN luôn tiếp xúc với một đường tròn cố định.

Gợi ý làm bài

(Xem hình 3.35)

Gọi y = kx và \(y =  - {1 \over k}x\) là phương trình của Ou và Ov. 

Phương trình hoành độ giao điểm của Ou và elip (E):

\({{{x^2}} \over {{a^2}}} + {{{k^2}{x^2}} \over {{b^2}}} = 1 \Leftrightarrow x_M^2 = {{{a^2}{b^2}} \over {{b^2} + {k^2}{a^2}}}.\)

Ta có : 

\(\eqalign{
& O{M^2} = x_M^2 + y_M^2 \cr
& = x_M^2 + {k^2}x_M^2 = x_M^2({k^2} + 1) \cr
& = {{{a^2}{b^2}(1 + {k^2})} \over {{b^2} + {k^2}{a^2}}} \cr} \)

.............

Suy ra : \({1 \over {O{M^2}}} = {{{b^2} + {k^2}{a^2}} \over {{a^2}{b^2}(1 + {k^2})}}.\)

Tương tự:

\(\eqalign{
& {1 \over {O{N^2}}} = {{{b^2} + {1 \over {{k^2}}}{a^2}} \over {{a^2}{b^2}\left( {1 + {1 \over {{k^2}}}} \right)}} \cr
& = {{{a^2} + {k^2}{b^2}} \over {{a^2}{b^2}(1 + {k^2})}}. \cr} \)

Suy ra: 

\(\eqalign{
& {1 \over {O{M^2}}} + {1 \over {O{N^2}}} \cr
& = {{{a^2} + {b^2} + {k^2}\left( {{a^2} + {b^2}} \right)} \over {{a^2}{b^2}\left( {1 + {k^2}} \right)}} \cr
& = {{{a^2} + {b^2}} \over {{a^2}{b^2}}}. \cr} \)

Vậy \({1 \over {O{M^2}}} + {1 \over {O{N^2}}}\) không đổi.

Vẽ đường cao OH của tam giác vuông OMN.

Ta có : \({1 \over {O{H^2}}} = {1 \over {O{M^2}}} + {1 \over {O{N^2}}} = {{{a^2} + {b^2}} \over {{a^2}{b^2}}}.\)

Suy ra: \(OH = {{ab} \over {\sqrt {{a^2} + {b^2}} }} = R\) không đổi

Vậy MN luôn tiếp xúc với đường tròn cố định tâ O bán kính \(R = {{ab} \over {\sqrt {{a^2} + {b^2}} }}.\)

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 10 - Xem ngay

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, hoàn trả học phí nếu học không hiệu quả.

Bài viết liên quan