Cho đường tròn (C) : \({x^2} + {y^2} - 6x + 2y + 6 = 0\) và điểm A(1;3).
a) Chứng tỏ rằng điểm A nằm ngoài đường tròn (C) .
b) Lập phương trình tiếp tuyến với (C) xuất phát từ điểm A.
Gợi ý làm bài
a) (C) có tâm I (3;-1) và có bán kính R = 2, ta có:
\(IA = \sqrt {{{\left( {3 - 1} \right)}^2} + {{\left( { - 1 - 3} \right)}^2}} = 2\sqrt 5 \)
và IA > R, vậy A nằm ngoài (C).
b) \({\Delta _1}:3x + 4y - 15 = 0\); \({\Delta _2}:x - 1 = 0\).
Sachbaitap.net
>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, hoàn trả học phí nếu học không hiệu quả.
Bài viết liên quan
Các bài khác cùng chuyên mục